
Feydra: Getting Started
About
When creating a Sitecore web application, there are many dependencies between the tasks of front-end
and back-end developers. Feydra tries to break these dependencies by allowing front-end developers to
work on the Sitecore web application without needing to install and maintain an entire Sitecore
development environment.

The Virtual Sandbox - How it works
Feydra allows any MVC web application to host front-end development by creating virtual sandboxes for
each front-end developer. A virtual sandbox is a virtualized environment in which front-end assets (css,
js, cshtml, etc.) can be selectively replaced without disturbing the back-end functionality of the web
application. This virtualization allows back-end developers to create stubs for front-end functionality
without having the actual front-end assets available at development time. The front-end developers can
hook-up the components as they become available without impacting back-end development.

Feydra also greatly improves front-end developers’ ability to maintain and update their portion of the
web application. If there are issues with the front-end functionality of the site, a front-end developer
can easily update the front-end assets in their virtual sandbox and test fixes against a working web
application; all without the overhead of maintaining a full Sitecore development environment or MVC
application.

Ultimately, Feydra is designed to allow front-end developers to use their preferred development
environment; make their changes in a virtual sandbox and test by pushing their changes to a shared
location (File share, FTP, etc.) using standard tools.

Installation with NuGet
Feydra is distributed as a .zip of NuGet packages. These packages can be added to a local NuGet feed to
make them accessible to developers and the build process.

To install Feydra, simply add the NuGet package Hedgehog.Feydra to a web application and the Feydra
assembly is automatically installed. If the developer is using Sitecore, add the NuGet package
Hedgehog.Feydra.Sitecore to the web application.

The MVC core of Feydra consists of a single assembly called Hedgehog.Feydra.dll. If this file is present in
the /bin folder of a website, Feydra will be available on that server. Deleting this file will remove Feydra.

The Sitecore components of Feydra consist of two additional files. These are Hedgehog.Feydra.SC.dll
and Z_Feydra.config. These are installed in the /bin and /App_Config/Include folders, respectively.

Installation without NuGet
To install Feydra without using NuGet, extract the files from the NuGet packages and place the files in
the folders specified in the table below:

File Folder
Hedgehog.Feydra.dll
Hedgehog.Feydra.SC.dll

/bin

Z_Feydra.config /App_Config/Include

Deployment
Feydra needs to be deployed on the servers where the front-end developers are going to be updating
front-end assets. This can be any server capable of running the web application. We recommend using a
server that is not used for CI builds, since the build/deployment process will interfere with the front-end
developer testing.

Feydra doesn’t support load balanced servers. Load balanced servers are typically not needed in a
development environment, so this should not be a major problem.

The Feydra assemblies and configuration files should not be deployed to a production server.

Setup
Once Feydra is installed on a server, Feydra will verify the environment and display error messages
indicating any problems found on the server that would prevent Feydra from functioning correctly. The
following is a list of requirements Feydra will check at startup:

 There is a folder called FeydraRoot in the root of the website. If the folder doesn’t exist, Feydra
will try to add it. Feydra will report a problem if the folder cannot be created.

 The Web Server needs write rights to FeydraRoot.
 There must be a folder called /App_Data/Feydra. If the folder doesn’t exist, Feydra will try to

add it. Feydra will report an error if the folder cannot be created.
 The Web Server needs write rights to /App_Data/Feydra and all files in that folder.
 The Web Server needs write rights to a folder called /Areas/Feydra.
 The property runAllManagedModulesForAllRequests must be set on the

/configuration/modules element in the web.config.

Using Feydra
A front-end developer needs to be able to copy files to the web server to work with the website. There
are a number of ways this can happen (Unc path, remote access, FTP, etc.). The choice of the technology
for copying files to the server is left up to the end user.

The Feydra Dashboard
Feydra is controlled through the Feydra dashboard. The Feydra dashboard is accessed by the url
http://[WebServer]/Feydra where [WebServer] is the domain name of the web server. The dashboard
has the following functions:

 Status – Shows the number of users, licenses and the latest log entries.
 Users – Allows users to be added and removed. Users can also obtain a link to activate Feydra.
 Licenses – Allows the licenses for Feydra to be updated. Viewing and adding licenses can only be

performed on the local server. Remote viewing of the license screen is not permitted.
 Settings – Allows some of the settings controlling Feydra to be updated. The initial files a user

sees when their username is created can be updated here.

There is a dropdown link in the menu bar of the website that will allow a user to activate Feydra for any
of the registered users.

Activating Feydra
The web application behaves normally when the front-end developer has not activated Feydra. To
activate Feydra, the user can open the dashboard and use the dropdown link in the menu bar to activate
Feydra by selecting their username.

The user can also obtain an activation link from the users page by clicking on the “ ” icon in the row for
the user.

Updating the front-end assets
When the front-end developer activates Feydra, they will see a copy of the application running
application. We call this the users’ virtual sandbox. This virtual sandbox uses all of the deployed front-
end assets (cshtml, js, css, etc…) to run the application. If the user copies a front-end asset into their
personal folder under /FeydraRoot, the front-end asset from the personal folder replaces the file of the
same name and relative path in the deployed web application.

An example of this is a web application with the following folder structure:

[WebRoot]
├───Areas
│ └───Products
│ ├───Index.cshtml
│ └───View.cshtml
└───Include
 ├───css
 │ └───site.css
 └───js
 └───site.js

When User1 is created, a personalized sandbox folder for that user will be created under the
FeydraRoot folder:

[WebRoot]
└───FeydraRoot
 └───User1

Now, User1 can use their personal Feydra activation link to activate Feydra. The web application will
look exactly as it did if Feydra isn’t activated since they have no files in their sandbox.

If the user creates a file called Index.cshtml in /FeydraRoot/User1/Area/Products, the file will override
the Index.cshtml file used to render the products page on the website. This allows the front-end
developer to update the front-end functionality of the web application, while allowing other parts of the
application to function with existing front-end assets.

The user may also update the Site.js file in the folder /Include/js by placing a new Site.js file in
/FeydraRoot/User1/Include/js. The new Site.js will be sent to the browser in place of the existing one
when the page is refreshed.

If there are other users of the site who have not activated as User1, they will not see any of the changes
made by User1 until the changes are deployed as part of the normal deployment process. Additional
users may be created to allow multiple developers to work with the website. Each developer will only
see the changes in their virtual sandbox while Feydra is activated.

If the front-end developer views the page source when Feydra is activated, they will see comments
around various parts of the code indicating where the .cshtml files exist on the file system.

This will provide hints to the front-end developer for manipulating various components on the page.

Adding Licenses
Licenses are added to Feydra using the license management screen. This screen may only be accessed
when logged into the console of the local server.

Feydra will not allow users to activate their virtual sandbox if there aren’t enough CAL’s for all of the
created users.

The user can add new license keys by selecting Add License.

The “ ” (Refresh) action will contact the Hedgehog License Server and update the number of CAL’s
(Client Access License) or license type if it has changed.

The “ ” (Delete) action will remove a license and its associated CAL’s from the server.

Feydra Settings
The Feydra settings screen allows the developer to view and/or change the settings Feydra uses on the
server.

To use this screen, simply make the changes needed to the settings and click “Update Settings”

The settings the user can update are as follows:

 Cookie Name – The name of the cookie Feydra uses to maintain the current user activation.
 Root Folder – The name of the Feydra root folder. If this is changed after users are created, the

developer is responsible for moving the users files into the new location.
 User Create Actions – This allows the developer to specify files to copy (relative to the web root)

into each virtual sandbox when the user is created. This is useful for setting up files like the
/Views/web.config, since these files are needed by MVC to build the views correctly.

Conclusion
Feydra supports multiple user sandboxes, allowing multiple front-end developers to work with a single
web application. This will dramatically reduce the costs of maintaining development and test
environments for front-end developers while allowing them to complete their task more efficiently.

