
Powered by

Helix, Habitat and
TDS Classic

01

Technical Whitepaper

01

A How-To Guide

Powered by

Version 1.1.1

Table of Contents

1. Separation of Modules, as Promoted by Helix

2. Initial Setup of the Base Repo of TDS Classic Habitat

3. Updating Changes on your Local Site

4.Getting Updated Items from Sitecore

5. Frequently Asked Questions

6. Cross-Project Recommendation

7. Further Code-Generation, Cross-Project Specifics

8. Conclusion

Helix, Habitat and TDS Classic: A How-to Guide 1

©2017 Hedgehog. All Rights Reserved.

Powered by

Version 1.1.1

Separation of Modules, as Promoted by Helix

Habitat implements Helix’s ‘separation of modules’ by using separate
projects in Visual Studio; this process attempts to avoid a scenario wherein
developers break Helix principles by making it more difficult for them to
create cross-module references. Enforcing this separation of modules could
also be done by code-analysis tools. This is the reason why we’ve created
FxCop Rules for Helix.

http://www.hhog.com/blog/sitecore-helix-fxcop-rules/

With these, it’s possible for users to enforce correct module dependency
direction by running these FxCop rules instead of relying on project
separation. Additionally, users can, in theory, compact the projects but keep
the modules separated by namespace or MVC Area and have the rules still
enforce the modular separation from Helix principles.

Shrinking the number of projects is subtly mentioned in the Helix
documentation, but doing so is widely approved by Sitecore’s best practices
team, including Thomas Eldblom, the creator of Helix. He has promoted
FxCop rules in discussions around this topic.

When using module separation enforcement by project rather than by code
analysis, developers can still break Helix principles by consciously making
the reference (or accidentally make it through using ReSharper’s auto-
project-referencing feature). Using code analysis to enforce this is a much
safer alternative, and shrinking the number of projects in a solution means
that both build times and the site load times are improved.

Helix, Habitat and TDS Classic: A How-to Guide 2

http://www.hhog.com/blog/sitecore-helix-fxcop-rules/

Powered by

Version 1.1.1

Initial Base Repo Setup of TDS Classic Habitat

Helix, Habitat and TDS Classic: A How-to Guide 3

Hedgehog’s TDS Classic copy of Habitat can be found on Github.

https://github.com/HedgehogDevelopment/Habitat/tree/TDS-latest

The simple procedure to deploy to a fresh Sitecore instance is as follows:

• Set your settings

• Right click the solution, click Deploy Solution.

This process both builds the code and deploys the items.

There is neither a requirement on NPM nor a need for running Gulp tasks;
both are necessary in the original repo. Additionally, the initial build and
deployment time is halved when using TDS Classic. A developer machine
that clocked a 14-minute deployment time for the default Habitat solution
clocked a 7-minute deployment time for the TDS Classic fork of the same
repo.

https://github.com/HedgehogDevelopment/Habitat/tree/TDS-latest

Powered by

Version 1.1.1

Updating Changes on your Local Site

Helix, Habitat and TDS Classic: A How-to Guide 4

When you receive the latest version from source control, which often
contains other developers updated code and items, updating your local site
is as easy as Right Click -> Deploy Solution.

If you want to push the items to Sitecore but not build/deploy the code, you
can use the Quick Push feature (introduced in TDS Classic 5.6 and enhanced
in TDS Classic 5.7) to work across the entire solution:

https://www.teamdevelopmentforsitecore.com/Blog/tds-5-6-quick-push

Getting Updated Items from Sitecore

If, upon editing or adding multiple items across an entire Sitecore instance,
you need to serialize them in order to add them into source control, you can
add them using features in TDS Classic. Past versions of the product had
features such as ‘Get Sitecore Items’ or ‘Sync Sitecore’ on individual projects.

TDS Classic 5.1 added a ‘Sync Using History’ View to the individual projects,
which shows the most recently updated items in the sync window.

http://hedgehogdevelopment.github.io/tds/chapter4.html#sync-using-
history-window

But with Habitat, users face the possibility that items are living across many
TDS Classic projects in the solution (though this example is not limited to the
Helix principles). TDS Classic 5.5 introduced a feature where you can ‘Sync
All TDS Projects using History’ on the entire solution.

http://hedgehogdevelopment.github.io/tds/chapter4.html - sync-
allprojects-using-history-window

This utilizes the same Sync Using History view as above, but covers all the
TDS Classic projects in a solution.

https://www.teamdevelopmentforsitecore.com/Blog/tds-5-6-quick-push
http://hedgehogdevelopment.github.io/tds/chapter4.html#sync-using-history-window
http://hedgehogdevelopment.github.io/tds/chapter4.html#sync-allprojects-using-history-window

Powered by

Version 1.1.1

Sync Using History Windows

Helix, Habitat and TDS Classic: A How-to Guide 5

Powered by

Version 1.1.1

Frequently Asked Questions

Helix, Habitat and TDS Classic: A How-to Guide 6

Yes. TDS Classic 5.5 introduced AutoSync which specifically helps with this.

Go to Tools/Options -> TDS Options/General, and turn ‘AutoSync changes in
Sitecore’ to ‘True’.

Now all item updates made in Sitecore will be automatically brought into
your TDS Classic projects so long as your solution is open in Visual Studio.

AutoSync from the Browser was new in TDS Classic 5.5; AutoSync itself has
been around since TDS Classic 3.0.

http://www.seanholmesby.com/tds-the-evolution-of-auto-sync/

“Is it possible to avoid a
scenario in which I have
to sync these items
manually?”

http://www.seanholmesby.com/tds-the-evolution-of-auto-sync/

Powered by

Version 1.1.1

Helix, Habitat and TDS Classic: A How-to Guide 7

Sync Using History and Auto Sync are great features for getting your own
Sitecore changes onto disk. But if you grab another developer’s changes
from source control, you might want to compare disk items to Sitecore
items.

TDS Classic 5.7 introduced the ability to Sync All Projects with Sitecore. You
can now do a full comparison of every item across every project in your
solution with a single click.

This utilizes the same Sync comparison window used in Sync with Sitecore,
but it expands to cover every TDS project within the solution as well as all of
the items changing within them.

“How can I view the
differences between
my file system and
Sitecore across the
entire solution?”

Powered by

Version 1.1.1

Helix, Habitat and TDS Classic: A How-to Guide 8

If you were doing a full solution sync with many items throughout all your
TDS projects could take a long time, yes. We wanted to find a way to speed
this up.

TDS Classic 5.7 introduces Lighting Sync Mode. Lightning Sync saves
comparison time by initially comparing just the Revision ID of the item on
disk to the Revision ID of the item within Sitecore. If the IDs match, the item
is presumed to be unchanged and the sync window skips it without needing
to compare each and every field on the item. This has led to full project
syncs that are up to 300% faster than a default sync.

To enable Lightning Sync Mode, you can turn it on within the TDS Options
Window:

Or by toggling on the Lightning Mode icon within the Sync window itself:

“Won’t comparing so
many items take a long
time?”

Powered by

Version 1.1.1

Helix, Habitat and TDS Classic: A How-to Guide 9

When editing content items, Sitecore will update the statistics on an item.
That will include an update to the Revision ID, among other things such as
Updated Date, Updated By, etc. Therefore, any normal content change will
cause the Revision ID to change and Lightning Sync will pick it up.

However, it is possible that some changes could be overlooked in the
comparison in the Revision ID is not updated. Luckily, this rarely happens
and generally occurs only in edge-case scenarios.

A more detailed explanation of the edge cases for Lightning Sync can be
found here:

https://www.teamdevelopmentforsitecore.com/Blog/TDS-Classic-5-7-
Lightning-Mode

Absolutely!

The Lightning Sync Mode setting found in the TDS Options above will apply
to any hierarchical sync operation, including ‘Sync all projects with Sitecore’,
‘Sync with Sitecore’, ‘Sync this item’. In addition to this, ‘Quick Push all TDS
Projects’ and ‘Quick Push Items’ also adhere to the setting. If the Revision IDs
match, Quick Push will skip over it, saving time by not ‘re-pushing’ the item
to Sitecore without any changes.

Local Deployments (using ‘Deploy Solution’) can also benefit from Lightning
Mode as well, however this has a different setting, as it’s an MSBuild
operation, not a Visual Studio operation. To turn on Lightning Deploy Mode
for local deployments, select the ‘Enable Lightning Deploy Mode’ checkbox
on the Build Properties page, or by enabling it in the TdsGlobal.config file
with <LightningDeployMode>True</LightningDeployMode>.

Lightning Deploy Mode is available for any configuration that uses the
Sitecore Connector to deploy items, as it needs to access Sitecore to
retrieve the Revision ID for comparison.

“If Lightning Sync only
compares Revision IDs,
could it miss other item
changes?”

“Lightning Mode
sounds amazing! Can it
be used with any other
features of TDS
Classic?”

https://www.teamdevelopmentforsitecore.com/Blog/TDS-Classic-5-7-Lightning-Mode

Powered by

Version 1.1.1

Helix, Habitat and TDS Classic: A How-to Guide 10

Yes. Creation of an Update Package on build is done by checking a
checkbox on the project properties page. This feature was introduced in TDS
Classic 2.0.

On the Properties page, choose the ‘Update Package’ tab, and turn on
Package generation.

Since TDS Classic 5.0, the Multi-Project Properties page has featured a
‘Package Bundling’ section, where you can select the other TDS Classic
projects you want to be included in the Update Package you’re generating
above.

Now you only need to manage one file for the entire solution’s build, instead
of a package for each project.

“I want a single,
deployable package for
my builds. Is that
possible with so many
projects?”

Powered by

Version 1.1.1

Cross-Project Recommendation

Helix, Habitat and TDS Classic: A How-to Guide 11

This property page also has a section for ‘Base Template References’ where
you can let your Code Generation (if you’ve turned it on) to be informed
about the items contained in other projects.

In this way a user’s code generation can be complete, with base
classes/interfaces, that are generated from outside of the current project.

Further Code-Generation, Cross-Project Specifics

Code generation in TDS Classic is very flexible, and users may generate code
however they like. We have provided some examples of code gen on the
hedgehog Github repo:

https://github.com/HedgehogDevelopment/tds-codegen

TDS Classic 5.6 introduced the ability for developers to add any additional
custom properties to be used in their code generation.

In some cross-project code generation cases, a user may want to pass in
custom namespaces that reference other projects. With TDS Classic 5.6,
users can now pass their custom properties into the code generation, any
fully customize the code-gen feature to your liking.

This is a more advanced feature of code generation, that can save the
duplication of Header TT files for each project.

https://github.com/HedgehogDevelopment/tds-codegen

Powered by

Version 1.1.1

Helix, Habitat and TDS Classic: A How-to Guide 12

Code-Generation From Another Solution

Using the Base Template References above, TDS projects can properly
generate code with inheritance from other TDS projects, but this field only
lists the TDS projects within the current solution.

Helix principles state that the code from a project can be split out into
multiple, logical solutions. Therefore, users may have multiple solutions
deploying to a Sitecore instance, each with their own TDS Projects. It’s then
possible that TDS projects in a ‘Core’ solution can have base templates and
code that is needed in another solution.

TDS Classic 5.7 introduced the ability to ‘Export Code Generation Reference
File’ from a TDS project that uses Code Generation, allowing it to be easily
used in other projects to know about the base templates for inheritance.

That file can then be used in the inheriting solution using the TDS Properties
– specifically by utilizing the ‘Code Gen Reference Files’ field on the ‘Multi-
Project Properties’ tab.

Powered by

Version 1.1.1

Benefits Summary

TDS Classic works fantastically with Helix-architected projects. It’s used for
serialization, but has many other features that greatly improve development
efficiency. TDS Classic provides world-class, time and user tested features
that can be enabled with a simple tick of a checkbox.

Helix, Habitat and TDS Classic: A How-to Guide 13

Email sales@hhog.com to schedule a live demonstration of the Sitecore Helix and overall
performance improvements of TDS Classic 5.7.

Get A Live Demonstration

mailto:sales@hhogdev.com

	Slide Number 1
	Table of Contents
	Separation of Modules, as Promoted by Helix
	Initial Base Repo Setup of TDS Classic Habitat
	Updating Changes on your Local Site
	Sync Using History Windows
	Frequently Asked Questions
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Cross-Project Recommendation
	Slide Number 13
	Benefits Summary

